Exercise 3

A mathematical plane surface of area S has an orientation given by a unit normal vector \mathbf{n}, pointing downstream of the surface. A fluid of density ρ flows through this surface with a velocity \mathbf{v}. Show that the mass rate of flow through the surface is $w=\rho(\mathbf{n} \cdot \mathbf{v}) S$.

Solution

The mass rate of flow with respect to time is $d m / d t$.

$$
w=\frac{d m}{d t}
$$

Mass is the product of fluid density ρ and volume V.

$$
w=\frac{d}{d t}(\rho V)
$$

If we assume that density is constant, then it can be pulled in front of the derivative.

$$
w=\rho \frac{d V}{d t}
$$

$d V / d t$ represents the volumetric flow rate, that is, the amount of fluid that flows through the surface per unit time. It is equal to the product of the surface's area S and the component of velocity in the direction of the surface's normal vector $\mathbf{v} \cdot \mathbf{n}$.

Figure 1: $\mathbf{v} \cdot \mathbf{n}$ represents the component of the velocity in the normal direction.

$$
w=\rho S \mathbf{v} \cdot \mathbf{n}
$$

The dot product is commutative. Therefore,

$$
w=\rho(\mathbf{n} \cdot \mathbf{v}) S
$$

